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Abstract 1 

This project addresses language 2 
barriers and translation latency by 3 
developing an on-device machine 4 
translation system for English to 5 
Spanish. It employs RNN and 6 
Transformer models, evaluating 7 
translation quality using BLEU and 8 
Rouge metrics. The best model, the 9 
RNN, is converted to TensorFlow 10 
Lite for practical deployment. The 11 
system incorporates on-device text 12 
recognition from still images, 13 
allowing instant English-to-14 
Spanish translations. Its unique 15 
feature is real-time elaboration, 16 
providing additional contextual 17 
information beyond translation. 18 
This enhances user experience and 19 
enables seamless communication 20 
across languages.  21 

1. Introduction 22 

1.1 Background 23 
Language barriers and translation latency are 24 
persistent challenges in effective global 25 
communication. To address these issues, this 26 
project focuses on developing an on-device 27 
machine translation system that offers real-28 
time elaboration and question-and-answer 29 
(QnA) capabilities. Our specific translation 30 
task involves converting English text to 31 
Spanish, employing recurrent neural network 32 
(RNN) and Transformer models. Evaluation 33 
of translation quality utilizes standard metrics 34 
like BLEU and Rouge. 35 

To ensure practical implementation, we 36 
convert our best-performing model, the RNN, 37 
from TensorFlow to TensorFlow Lite, 38 
optimizing it for deployment on edge devices. 39 
We also integrate on-device text recognition 40 

for still images, allowing instant English-to-41 
Spanish translations. 42 
The unique feature of our system lies in its real-43 
time elaboration, going beyond basic 44 
translation. For example, if a user inputs a 45 
question such as "How to make an omelette," 46 
our system not only provides the translation but 47 
also offers step-by-step instructions in Spanish. 48 
This anticipates users' potential future queries, 49 
enhancing the user experience. 50 

 51 

1.2 Dataset 52 
We have taken the dataset from the 53 
sentences_detailed.csv file from tatoeba.org. 54 
(http://tatoeba.org/files/downloads/sentences_55 
detailed.csv). 56 

2     Models 57 

This project delves into the exploration of two 58 
different models for our machine translation 59 
task: RNN and Transformer. The objective is to 60 
evaluate their performance and effectiveness in 61 
addressing these issues. In the following 62 
sections, we provide detailed explanations of 63 
each model and their respective 64 
methodologies. 65 
 66 

2.1 RNN 67 
A Recurrent Neural Network (RNN) is a type 68 

of neural network that is well-suited for 69 

processing sequential data. It’s architecture 70 

allows it to retain information from previous 71 

steps and utilize it in subsequent steps, 72 

allowing it to capture  temporal dependencies. 73 

Since RNNs can process sequential data and 74 

capture contextual dependencies between 75 

words, Neural machine translation systems 76 

are typically implemented with a Recurrent 77 

Neural Network (RNN) based encoder-78 

decoder framework (Bahdanau et al., 2016). 79 

For our experiment, we decided to use a 80 
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bidirectional RNN encoder-decoder 81 

architecture (Bahdanau et al., 2016; Yang et 82 

al., 2017). In this setup, the source language 83 

sentence is encoded using a bidirectional 84 

RNN. The encoded representation of the 85 

source sentence is then passed to a decoder 86 

RNN, which generates the corresponding 87 

translated sentence in the target language. We 88 

have kept dimensionality of the embedded 89 

layer as 256, batch size as 64 and used Adam 90 

optimizer (Kingma and Ba, 2014). Due to 91 

limited compute, we have used only 1 encoder 92 

and decoder layer. Following (Srivastava, 93 

2013), we used dropout after the RNN 94 

decoder layer. By considering past and future 95 

contexts of each word, bidirectional RNNs are 96 

able to better capture contextual information, 97 

leading to more accurate translations, as 98 

compared to their vanilla counterpart. This 99 

was the motivation behind using  bidirectional 100 

RNN. 101 

Since RNNs process data in a sequential 102 

manner, they can be slow. Another drawback 103 

of RNN is that it is not able to retain long term 104 

dependencies. So, another popular choice can 105 

be to use RNN with Long-Short Term 106 

Memory (LSTM) for the machine translation 107 

tasks (Jozefowicz et al.,2016; Lample et 108 

al.,2018). However, our dataset didn’t 109 

comprise of very long sentences, and due to 110 

limited computing power, we decided not to 111 

use LSTM. 112 

2.2 Transformer 113 
A transformer is a neural network architecture 114 
that uses attention mechanism to process 115 
sequential data. Unlike recurrent neural 116 
networks (RNNs), transformers operate in 117 
parallel, enabling more efficient computation. 118 
We are chosing the Transformer model 119 
(Vaswani et al., 2017) as it has shown to be 120 
very effective for Machine Translation tasks 121 
(Ott et al., 2018), including multilingual 122 
machine translation tasks (Lakew et al., 2018; 123 
Sachan and Neubig, 2018). This is due to their 124 
attention mechanism, parallel processing, and 125 
encoder-decoder architecture. The attention 126 
mechanism allows them to capture 127 

dependencies between words in a sentence, 128 
facilitating the understanding of contextual 129 
relationships. Parallel processing enables 130 
efficient handling of long sequences, and the 131 
encoder decoder architecture handles 132 
variable-length input and output sequences.  133 

For our experiment, we focused on the 134 
Transformer in the “Base” configuration. We 135 
refer the reader to Vaswani et al. (2017) to get 136 
a better understanding of the model 137 
architecture. Due to compute restrictions, we 138 
have only used 1 encoder and 1 decoder block. 139 
The encoder comprises of 8 attention heads, 1 140 
attention layer, 2 add and normalization layers 141 
and 2 fully connected layers with 2048 and 142 
256 neurons. The decoder block comprises of 143 
8 attention heads, 2 attention layers ( self and 144 
cross attention). 3 add and normalization 145 
layers and 2 fully connected layers with 2048 146 
and 256 neurons. We have kept 147 
dimensionality of the embedded layer as 256, 148 
batch size as 64 and used Adam optimizer 149 
(Kingma and Ba, 2014) 150 

3      Workflow 151 

The workflow of our project is mentioned in 152 
this section with a detailed diagram in figure 1. 153 

 154 
Figure 1: Project workflow 155 

After training the selected model for an 156 
adequate number of epochs, the TensorFlow 157 
model is converted into a TensorFlow Lite 158 
model using the following command: 159 

 160 
The primary purpose of this conversion is to 161 
leverage the advantages of TensorFlow Lite 162 
models. Unlike TensorFlow models, these 163 
lightweight models allow us to deploy high-164 
performance models on embedded systems or 165 
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mobile devices without significant degradation 166 
in performance or accuracy. An additional 167 
advantage is the availability of prebuilt and 168 
popular Android SDKs, such as MLKit, which 169 
natively support the loading of these lite 170 
models at runtime on any Android device. The 171 
converted model is then saved in the Android 172 
resource directory and loaded at runtime using 173 
the following code:174 

 175 
In our implementation, we utilize two models: 176 
MLKit's native OCR model for text 177 
recognition and a custom-built translation 178 
model developed by our team. The Optical 179 
Character Recognition model is imported as a 180 
vision dependency using 181 
"com.google.ml.vision.DEPENDENCIES". 182 
We process the bitmap image through the OCR 183 
model and utilize convenient methods such as 184 
"onSuccessListener" and "onFailureListener" 185 
to obtain the desired results. The recognized 186 
text is extracted from the onSuccess method 187 
and passed into the TFLite translation model, 188 
which is loaded using MLKit. It is worth 189 
mentioning that the OCR model is downloaded 190 
during the initial run of the app and cached for 191 
subsequent runs. However, this may lead to 192 
race conditions if users attempt to translate text 193 
before the OCR model finishes loading. 194 
Once the translation model is loaded, we set the 195 
source and target languages as translator 196 
options and invoke the on-device model to 197 
obtain the translated text: 198 

 199 
In this specific scenario, we set the source 200 
language to English and the target language to 201 
Spanish. The translated text is obtained 202 
through the "onSuccess" method, similar to the 203 
callback methods used for the OCR model. We 204 
display the recognized and translated text on 205 
the user interface as soon as we receive it from 206 
the model. 207 
To provide further elaboration of the translated 208 
text, we make a POST call to OpenAI's 209 
completion API 210 
(https://api.openai.com/v1/chat/completions). 211 
It is important to obtain a bearer token from 212 

OpenAI's developer dashboard for 213 
authenticating the API calls. 214 
Figure 2 displays the translation result: Notice 215 
how the language translation model gives the 216 
correct result despite a word gap issue with 217 
the recognized text.  218 

 219 
Figure 2: Translation Result 220 

 221 
4    Result and Comparison 222 
Initially, we used Precision, Recall and F-1 223 
score to evaluate our models. However, we 224 
were not getting  satisfactory results. This is 225 
expected because these metrics on their own 226 
are not able to capture nuanced nature of 227 
translation quality. Precision and recall are 228 
metrics commonly used in tasks like 229 
information retrieval or binary classification, 230 
where the goal is to classify instances into 231 
categories. However, in machine translation, 232 
the output is a sequence of words or phrases, 233 
and a direct classification evaluation is not 234 
appropriate. F-1 score combines precision and 235 
recall into a single metric, which can be useful 236 
in certain tasks. However, it would still not be 237 
able to capture the complexities and subtleties 238 
of translation quality. So, we decided to use 239 
BLEU (Bilingual Evaluation Understudy) and 240 
ROUGE (RecallOriented Understudy for 241 
Gisting Evaluation) metrics as these will 242 
consider factors such as n-gram overlap and 243 
semantic similarity providing a more 244 
comprehensive assessment of translation 245 
quality. As we can see from the below table 246 
Bidirectional RNN Encoder Decoder 247 
outperforms Transformer model the main 248 
reason behind it is that the transformer model 249 
has just one encoder-decoder block and has 250 
been trained for insufficient number of epochs 251 
due to compute constraints.  252 

Following are the BLEU and ROUGE scores 253 
for English to Spanish translation task. 254 
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Table 1: Comparing evaluation metrics 255 
 256 

Futhermore, we also successfully ported it on-257 
device and tested the performance of our model 258 
on android, the screenshots attached below 259 
testify our successful implementation of the 260 
project. 261 
 262 

 263 
Figure 3: Translation Result- On-device 264 

 265 
Figure 3 shows the result of processing and 266 
extracting the text from the image using 267 
Optical Character Recognition(OCR) model 268 
and translation results using our custom model. 269 
Both of them uses MLKit as SDK on android. 270 
 271 
 Also, Figure 4 below shows the results of the 272 
remote API call made to OpenAI services 273 
using the “gpt-3.5-turbo” model that gives the 274 
context aware elaboration results. 275 

 276 
Figure 4: Elaboration Result- On-device 277 

 278 

5    Conclusion 279 
In conclusion, this project successfully 280 
developed a machine translation system that 281 
operates on user devices and offers real-time 282 
elaboration and Q&A capabilities. The RNN 283 
model demonstrated superior performance 284 
compared to the Transformer model, achieving 285 
notable BLEU (0.617) and Rouge scores 286 
across different metrics. The utilization of 287 
TensorFlow Lite enabled efficient deployment 288 
on edge devices, while on-device text 289 
recognition facilitated instant translations from 290 
English to Spanish. The incorporation of real-291 
time elaboration enhanced the user experience, 292 
and the integration of OpenAI's completion 293 
API provided additional information. Overall, 294 
this project significantly contributes to 295 
overcoming language barriers, with potential 296 
avenues for further exploration and 297 
optimization of models in the future. 298 
 299 
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