
1

Abstract 1

This project addresses language 2
barriers and translation latency by 3
developing an on-device machine 4
translation system for English to 5
Spanish. It employs RNN and 6
Transformer models, evaluating 7
translation quality using BLEU and 8
Rouge metrics. The best model, the 9
RNN, is converted to TensorFlow 10
Lite for practical deployment. The 11
system incorporates on-device text 12
recognition from still images, 13
allowing instant English-to-14
Spanish translations. Its unique 15
feature is real-time elaboration, 16
providing additional contextual 17
information beyond translation. 18
This enhances user experience and 19
enables seamless communication 20
across languages. 21

1. Introduction 22

1.1 Background 23
Language barriers and translation latency are 24
persistent challenges in effective global 25
communication. To address these issues, this 26
project focuses on developing an on-device 27
machine translation system that offers real-28
time elaboration and question-and-answer 29
(QnA) capabilities. Our specific translation 30
task involves converting English text to 31
Spanish, employing recurrent neural network 32
(RNN) and Transformer models. Evaluation 33
of translation quality utilizes standard metrics 34
like BLEU and Rouge. 35

To ensure practical implementation, we 36
convert our best-performing model, the RNN, 37
from TensorFlow to TensorFlow Lite, 38
optimizing it for deployment on edge devices. 39
We also integrate on-device text recognition 40

for still images, allowing instant English-to-41
Spanish translations. 42
The unique feature of our system lies in its real-43
time elaboration, going beyond basic 44
translation. For example, if a user inputs a 45
question such as "How to make an omelette," 46
our system not only provides the translation but 47
also offers step-by-step instructions in Spanish. 48
This anticipates users' potential future queries, 49
enhancing the user experience. 50

 51

1.2 Dataset 52
We have taken the dataset from the 53
sentences_detailed.csv file from tatoeba.org. 54
(http://tatoeba.org/files/downloads/sentences_55
detailed.csv). 56

2 Models 57

This project delves into the exploration of two 58
different models for our machine translation 59
task: RNN and Transformer. The objective is to 60
evaluate their performance and effectiveness in 61
addressing these issues. In the following 62
sections, we provide detailed explanations of 63
each model and their respective 64
methodologies. 65
 66

2.1 RNN 67
A Recurrent Neural Network (RNN) is a type 68

of neural network that is well-suited for 69

processing sequential data. It’s architecture 70

allows it to retain information from previous 71

steps and utilize it in subsequent steps, 72

allowing it to capture temporal dependencies. 73

Since RNNs can process sequential data and 74

capture contextual dependencies between 75

words, Neural machine translation systems 76

are typically implemented with a Recurrent 77

Neural Network (RNN) based encoder-78

decoder framework (Bahdanau et al., 2016). 79

For our experiment, we decided to use a 80

ON-DEVICE MACHINE TRANSLATION WITH

REAL-TIME ELABORATION AND QnA

Aurosweta Mahapatra Shrey Mathur Syam Sundar Kirubakaran Vaibhav Tiwari

206070948 205928673 805905367 105912719

aurosweta99@ucla.edu shreyzmail@gmail.com syamk@ucla.edu vaibhavtiwari@ucla.edu

mailto:aurosweta99@ucla.edu
mailto:shreyzmail@gmail.com

2

bidirectional RNN encoder-decoder 81

architecture (Bahdanau et al., 2016; Yang et 82

al., 2017). In this setup, the source language 83

sentence is encoded using a bidirectional 84

RNN. The encoded representation of the 85

source sentence is then passed to a decoder 86

RNN, which generates the corresponding 87

translated sentence in the target language. We 88

have kept dimensionality of the embedded 89

layer as 256, batch size as 64 and used Adam 90

optimizer (Kingma and Ba, 2014). Due to 91

limited compute, we have used only 1 encoder 92

and decoder layer. Following (Srivastava, 93

2013), we used dropout after the RNN 94

decoder layer. By considering past and future 95

contexts of each word, bidirectional RNNs are 96

able to better capture contextual information, 97

leading to more accurate translations, as 98

compared to their vanilla counterpart. This 99

was the motivation behind using bidirectional 100

RNN. 101

Since RNNs process data in a sequential 102

manner, they can be slow. Another drawback 103

of RNN is that it is not able to retain long term 104

dependencies. So, another popular choice can 105

be to use RNN with Long-Short Term 106

Memory (LSTM) for the machine translation 107

tasks (Jozefowicz et al.,2016; Lample et 108

al.,2018). However, our dataset didn’t 109

comprise of very long sentences, and due to 110

limited computing power, we decided not to 111

use LSTM. 112

2.2 Transformer 113
A transformer is a neural network architecture 114
that uses attention mechanism to process 115
sequential data. Unlike recurrent neural 116
networks (RNNs), transformers operate in 117
parallel, enabling more efficient computation. 118
We are chosing the Transformer model 119
(Vaswani et al., 2017) as it has shown to be 120
very effective for Machine Translation tasks 121
(Ott et al., 2018), including multilingual 122
machine translation tasks (Lakew et al., 2018; 123
Sachan and Neubig, 2018). This is due to their 124
attention mechanism, parallel processing, and 125
encoder-decoder architecture. The attention 126
mechanism allows them to capture 127

dependencies between words in a sentence, 128
facilitating the understanding of contextual 129
relationships. Parallel processing enables 130
efficient handling of long sequences, and the 131
encoder decoder architecture handles 132
variable-length input and output sequences. 133

For our experiment, we focused on the 134
Transformer in the “Base” configuration. We 135
refer the reader to Vaswani et al. (2017) to get 136
a better understanding of the model 137
architecture. Due to compute restrictions, we 138
have only used 1 encoder and 1 decoder block. 139
The encoder comprises of 8 attention heads, 1 140
attention layer, 2 add and normalization layers 141
and 2 fully connected layers with 2048 and 142
256 neurons. The decoder block comprises of 143
8 attention heads, 2 attention layers (self and 144
cross attention). 3 add and normalization 145
layers and 2 fully connected layers with 2048 146
and 256 neurons. We have kept 147
dimensionality of the embedded layer as 256, 148
batch size as 64 and used Adam optimizer 149
(Kingma and Ba, 2014) 150

3 Workflow 151

The workflow of our project is mentioned in 152
this section with a detailed diagram in figure 1. 153

 154
Figure 1: Project workflow 155

After training the selected model for an 156
adequate number of epochs, the TensorFlow 157
model is converted into a TensorFlow Lite 158
model using the following command: 159

 160
The primary purpose of this conversion is to 161
leverage the advantages of TensorFlow Lite 162
models. Unlike TensorFlow models, these 163
lightweight models allow us to deploy high-164
performance models on embedded systems or 165

3

mobile devices without significant degradation 166
in performance or accuracy. An additional 167
advantage is the availability of prebuilt and 168
popular Android SDKs, such as MLKit, which 169
natively support the loading of these lite 170
models at runtime on any Android device. The 171
converted model is then saved in the Android 172
resource directory and loaded at runtime using 173
the following code:174

 175
In our implementation, we utilize two models: 176
MLKit's native OCR model for text 177
recognition and a custom-built translation 178
model developed by our team. The Optical 179
Character Recognition model is imported as a 180
vision dependency using 181
"com.google.ml.vision.DEPENDENCIES". 182
We process the bitmap image through the OCR 183
model and utilize convenient methods such as 184
"onSuccessListener" and "onFailureListener" 185
to obtain the desired results. The recognized 186
text is extracted from the onSuccess method 187
and passed into the TFLite translation model, 188
which is loaded using MLKit. It is worth 189
mentioning that the OCR model is downloaded 190
during the initial run of the app and cached for 191
subsequent runs. However, this may lead to 192
race conditions if users attempt to translate text 193
before the OCR model finishes loading. 194
Once the translation model is loaded, we set the 195
source and target languages as translator 196
options and invoke the on-device model to 197
obtain the translated text: 198

 199
In this specific scenario, we set the source 200
language to English and the target language to 201
Spanish. The translated text is obtained 202
through the "onSuccess" method, similar to the 203
callback methods used for the OCR model. We 204
display the recognized and translated text on 205
the user interface as soon as we receive it from 206
the model. 207
To provide further elaboration of the translated 208
text, we make a POST call to OpenAI's 209
completion API 210
(https://api.openai.com/v1/chat/completions). 211
It is important to obtain a bearer token from 212

OpenAI's developer dashboard for 213
authenticating the API calls. 214
Figure 2 displays the translation result: Notice 215
how the language translation model gives the 216
correct result despite a word gap issue with 217
the recognized text. 218

 219
Figure 2: Translation Result 220

 221
4 Result and Comparison 222
Initially, we used Precision, Recall and F-1 223
score to evaluate our models. However, we 224
were not getting satisfactory results. This is 225
expected because these metrics on their own 226
are not able to capture nuanced nature of 227
translation quality. Precision and recall are 228
metrics commonly used in tasks like 229
information retrieval or binary classification, 230
where the goal is to classify instances into 231
categories. However, in machine translation, 232
the output is a sequence of words or phrases, 233
and a direct classification evaluation is not 234
appropriate. F-1 score combines precision and 235
recall into a single metric, which can be useful 236
in certain tasks. However, it would still not be 237
able to capture the complexities and subtleties 238
of translation quality. So, we decided to use 239
BLEU (Bilingual Evaluation Understudy) and 240
ROUGE (RecallOriented Understudy for 241
Gisting Evaluation) metrics as these will 242
consider factors such as n-gram overlap and 243
semantic similarity providing a more 244
comprehensive assessment of translation 245
quality. As we can see from the below table 246
Bidirectional RNN Encoder Decoder 247
outperforms Transformer model the main 248
reason behind it is that the transformer model 249
has just one encoder-decoder block and has 250
been trained for insufficient number of epochs 251
due to compute constraints. 252

Following are the BLEU and ROUGE scores 253
for English to Spanish translation task. 254

4

Table 1: Comparing evaluation metrics 255
 256

Futhermore, we also successfully ported it on-257
device and tested the performance of our model 258
on android, the screenshots attached below 259
testify our successful implementation of the 260
project. 261
 262

 263
Figure 3: Translation Result- On-device 264

 265
Figure 3 shows the result of processing and 266
extracting the text from the image using 267
Optical Character Recognition(OCR) model 268
and translation results using our custom model. 269
Both of them uses MLKit as SDK on android. 270
 271
 Also, Figure 4 below shows the results of the 272
remote API call made to OpenAI services 273
using the “gpt-3.5-turbo” model that gives the 274
context aware elaboration results. 275

 276
Figure 4: Elaboration Result- On-device 277

 278

5 Conclusion 279
In conclusion, this project successfully 280
developed a machine translation system that 281
operates on user devices and offers real-time 282
elaboration and Q&A capabilities. The RNN 283
model demonstrated superior performance 284
compared to the Transformer model, achieving 285
notable BLEU (0.617) and Rouge scores 286
across different metrics. The utilization of 287
TensorFlow Lite enabled efficient deployment 288
on edge devices, while on-device text 289
recognition facilitated instant translations from 290
English to Spanish. The incorporation of real-291
time elaboration enhanced the user experience, 292
and the integration of OpenAI's completion 293
API provided additional information. Overall, 294
this project significantly contributes to 295
overcoming language barriers, with potential 296
avenues for further exploration and 297
optimization of models in the future. 298
 299

6.Acknowledgments 300
We would like to thank Prof. Kai Wei Chan for 301
encouraging us to try new cutting edge projects 302
and helping us throughout the coursework. We 303
also like to thank the course TAs Tanmay, 304
Elaine and Masoud for helping us in every 305
stage of the project. 306

5

References 307

1. D. Bahdanau, K. Cho, and Y. Bengio. 308

Neural Machine Translation by Jointly 309

Learning to Align and Translate. 2016. arXiv 310

preprint arXiv:1409.0473 [cs.CL]. 311

2. Rafal Jozefowicz, Oriol Vinyals, Mike 312

Schuster, Noam Shazeer, and Yonghui Wu. 313

2016. Exploring the Limits of Language 314

Modeling. In Proceedings of the 2016 315

Conference on Empirical Methods in Natural 316

Language Processing (EMNLP). 317

3. D. P. Kingma and J. Ba. "Adam: A method 318

for stochastic optimization." 2014. arXiv 319

preprint arXiv:1412.6980. 320

4. Surafel Melaku Lakew, Mauro Cettolo, and 321

Marcello Federico. 2018. A Comparison of 322

Transformer and Recurrent Neural Networks 323

on Multilingual Neural Machine Translation. 324

In Proceedings of the 27th International 325

Conference on Computational Linguistics, 326

pages 641–652, Santa Fe, New Mexico, USA. 327

Association for Computational Linguistics. 328

5. Guillaume Lample, Myle Ott, Alexis 329

Conneau, Ludovic Denoyer, and 330

Marc'Aurelio Ranzato. 2018. Phrase-Based & 331

Neural Unsupervised Machine Translation. In 332

Proceedings of the 2018 Conference on 333

Empirical Methods in Natural Language 334

Processing (EMNLP). 335

6. Myle Ott, Sergey Edunov, David Grangier, 336

and Michael Auli. 2018. Scaling Neural 337

Machine Translation. In Proceedings of the 338

Third Conference on Machine Translation: 339

Research Papers, pages 1–9, Brussels, 340

Belgium. Association for Computational 341

Linguistics. 342

7. Devendra Sachan and Graham Neubig. 343

2018. Parameter Sharing Methods for 344

Multilingual Self-Attentional Translation 345

Models. In Proceedings of the Third 346

Conference on Machine Translation: 347

Research Papers, pages 261–271, Brussels, 348

Belgium. Association for Computational 349

Linguistics. 350

8. Nitish, Srivastava. 2013. Improving neural 351

networks with dropout. PhD thesis, 352

University of Toronto. 353

9. Zhen Yang, Wei Chen, Feng Wang, and Bo 354

Xu. 2017. Improving Neural Machine 355

Translation with Conditional Sequence 356

Generative Adversarial Nets. In Proceedings 357

of the 2018 Conference of the North American 358

Chapter of the Association for Computational 359

Linguistics: Human Language Technologies, 360

Volume 1 (Long Papers), pages 1346–1355, 361

New Orleans, Louisiana. Association for 362

Computational Linguistics. 363

10. A. Vaswani, N. Shazeer, N. Parmar, J. 364

Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, 365

and I. Polosukhin. "Attention Is All You 366

Need." 2017. arXiv preprint 367

arXiv:1706.03762 [cs.CL]. 368

https://aclanthology.org/C18-1054
https://aclanthology.org/C18-1054
https://aclanthology.org/C18-1054
https://aclanthology.org/W18-6301
https://aclanthology.org/W18-6301
https://aclanthology.org/W18-6327
https://aclanthology.org/W18-6327
https://aclanthology.org/W18-6327
https://aclanthology.org/N18-1122
https://aclanthology.org/N18-1122
https://aclanthology.org/N18-1122

	1. Introduction
	1.1 Background Language barriers and translation latency are persistent challenges in effective global communication. To address these issues, this project focuses on developing an on-device machine translation system that offers real-time elaboration...
	2 Models
	3 Workflow
	References

